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Abstract 

In this paper. we address some flaws in the material allocation function of Materi- 
als Requirements Planning (MRP). Th e ro p bl em formulation differs from standard 
MRP logic in certain important ways; start and finish times for orders are forced to 
be realistic and material allocations are made to minimize the total tardiness penalty 
associated with late completion. We show that the resulting MRP material allocation 
problem is NP-hard in the strong sense. .A lower bound and a heuristic are developed 
from a mixed integer linear formulation and its Lagrangean relaxation. The lower 
bound and the heuristics are closer to the optimum in cases where there is either 
abundant material or considerable competition for material; in intermediate cases, 
small perturbations in material allocation can have a significant effect. .4 group of 
heuristics based on the MRP approach and its modifications is examined; they are 
optimal under certain conditions. An improvement method that preserves priorities 
inherent in an>- given starting solution is also presented. The Lagrangean heuristic 
performs better than the MRP based heuristics for a set of 3900 small problems, 
yielding solutions that are about 5% to 10% over the optimal. The best MRP based 
heuristic does about as well as the Lagrangean heuristic on a set of 120 larger prob- 
lems, and is 25% to 40% better than the standard MRP approach, on the data sets 
tested. 
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1 Introduction 

UDAY S. KARh4ARKAR AND RAMAKRISHNAN S. NAMBIMADOM 

Materials Requirements Planning (MRP) is probably the most widely used produc- 
tion control software method and has become a de facto standard in manufacturing 
management (Dilworth, 1993). X recent survey of manufacturing managers (Deloitte 
and Touche, 1990) found that MRP was considered their second most important tool. 
In its most extensive applications, it carries out or supports a large set of production 
control functions. including order release (batching and timing), inventory manage- 
ment: material coordination, material allocation, order tracking and data manage- 
ment. Despite the widespread popularity of MRP, it has not been the focus of much 
research. In particuiar: the decision problems in MRP are hidden and are solved using 
simple, and sometimes, arbitrary heuristics. In this paper, we examine the allocation 
of available material to orders. so as to minimize penalties due to late completion of 
final item customer orders against due dates. When allocated material is not suffi- 
cient to fill a gross requirement generated by an order: it creates a net requirement, 
which must be satisfied by a production order. This order requires a lead time and 
generates gross requirements for the next level in the bill of materials (BOM). The 
lead times involved in production or in obtaining input material may delay the order. 
Material allocation thus directly affects the completion time of orders at all levels 
of the BOM, and especially customer orders for end items. It is therefore a central 
factor in determining on time performance with respect to customer orders. 

In many industries today, material constraints can be as important as capacity 
constraints and hence improved material allocation techniques are as important as 
capacity management techniques such as sophisticated scheduling methods. For ex- 
ample. over the last. few years! there have been frequent component shortages in the 
computer industry. Computermorld (March 29: 1993) reported that IBM’s $ 1 billion 
backlog for its ThinkPad 700 line of notebook computers can be partly attributed to 
the shortage of .literally a nickel part’. The recent trend towards the adoption of lean 
manufacturing practices has further increased the importance of material allocation. 
The ability to allocate existing inventories in a judicious fashion decreases the need 
for large inventories in the first place. .A recent survey (Deloitte and Touche, 1990) 
notes that maintaining delivery performance and controlling inventory costs are two 
of the key objectives for manufacturers in the 1990s. 11:hile these objectives can be 
viewed as being contradictory to each other, improved methods of allocating existing 
inventories can allow manufacturers to pursue them simultaneously. 

In standard MRP logic, allocation of on hand inventories and scheduled re- 
ceipts is typically achieved by a fixed decision rule. The most common rule allocates 
available material to gross requirements in the due date sequence. A more sophisti- 
cated rule might first allocate materials to requirements generated by external cus- 
tomer orders for finished items. then allocate to orders for parts or spares, and finally 



MATERIAL ALLOCATION IN MRP 455 

fill orders for stock orders or inventory. In many MRP implementations: the planner 
has the option of reallocating material by overriding the system’s allocations. The 
system subsequently preserves these allocations. It is clear that any fixed allocation 
rule of the type described is likely to be non-optimal. 

Figure 1: Example 2 

It is of some interest to note the different ways in which the standard rule 
can be sub-optimal. As can be expected. one of the weaknesses of the method used 
in MRP (the due-date based allocation rule) is that it fails to discriminate between 
orders on the basis of their -importance’. In other words: it may be possible to obtain 
a solution, where an important order would be less tardy than in the solution provided 
by MRP: albeit, at the cost of a less important order. This may be accomplished by 
allocating inventory allocated to the latter order by MRP to the former order. This 
would not be surprising, since standard MRP has no mechanism to recognize order 
priorities. Interestingly however: it is possible to improve on the allocations made by 
MRP and obtain solutions where no order is worse off and some are indeed better 
off. Thus the problems with the material allocation techniques used by MRP go 
beyond the inability to recognize order priorities; SIRP leaves some room for free 
improvement. For example. consider a bill of material consisting of two items, with 
item 2 feeding item 1. Item 1 has two end orders. The first is for 15 units and has a 
due date of 1. The second is for 5 units with a due date of 2. Item 1 and 2 have 10 
units each of initial inventory. The lead time for item 1 is 3 units. The due date based 
rule would allot 10 units of item 1 and 5 units of item 2 to order 1. and 5 units of item 
2 to order 2. This would result in order 1 being late by 2 units and order 2 being late 
by 1 unit. However, if we reverse the sequence in which material is allotted, order 2 
would be done in time, while order 1 would be late by the same amount+ namely 2 
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units. Thus total tardiness is reduced by 1 unit. For another example, consider the 
bill of materiai shown in figure 1. The first order is for 10 units of item 1 with a due 
date of 1. The second order is for 10 units of item 2 with a due date of 0.5. Items 
1,2,5 and 6 have 110 initial inventory. Items 3,4,7 and 8 have an initial inventory of 
10 units. All lead times are 1 unit. The due date based rule allots 10 units each of 
items 4 and 8 to order 2 and 10 units of items 3 and 7 to order 2. This results in 
order 1 being late by 1 unit and order 2 by 1.5 units. Once again a reversal of this 
sequence enables us to do better. In particular, it results in order 1 being allotted 
10 units of items 3 and 4. and hence finishing on time, and order 2 being allotted 10 
units of items 7 and 8 and being late by the same 1.5 units as before. While these 
improvements are easy to.spot in this case, in general, we would find a combination 
of such instances and hence possible improvements may not be easily visible. 

In general: it is not hard to devise examples where the performance of such 
a fixed allocation rule is arbitrarily bad. It is therefore of some interest to examine 
the possibility of making allocations in some improved way. More fundamentally 
the role of allocation in NlRP is rather hidden, and it is often unclear that there 
are decision heuristics embedded in the MRP logic. Furthermore, standard MRP 
implementations do not reveal the consequences of allocation decisions, since the 
algorithm only makes a backward pass to determine release dates. If release dates 
are negative, the standard system does not impose non-negativity and work forward 
to determine the consequences for completion times of individual orders. One aim of 
this paper is to formalize the decision problem underlying material allocation. The 
formulation differs from standard MRP by requiring release dates to be non-negative. 
We also provide conditions under which the method used in MRP provides optimal 
solutions. 

There are not many explicit formulations of the set of problems tackled in 
MRP. Bitran et al. (1982) consider BOM relationships and integration of planning 
and release in a discrete period model. Billington et al. (1983) also formulate a 
discrete period mathematical programming model of planning and batching, including 
BOM relationships. The goal of these papers is perhaps primariIy to explore the 
integration of capacity plannin g and order release levels. The aspect of MRP that 
is not captured very well by such discrete period models is the release process with 
its lead time offsets. Hackman and Leachman (1989) explicitly address lead times, 
order offsets: and release timing in developing a general framework for production. 
Penlesky (1989) examines the problem of maintaining open order due dates in job 
shops using MRP to plan and schedule their operations. The material allocation 
problem in relation to order delays and tardiness penalties, is not solved in these 
papers. Tang(1988) mentions a similar problem of allocating scarce raw materials; 
the objective function considered there is that of minimizing the maximum tardiness 
penalty. King (1989) d escribes IRA11 (Intraworks Resource Allocation Model), a PC 
based optimization tool for allocating material, based on the work by Luss and Smith 
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(1986). The objective in these papers is to minimize the maximum shortfall. The 
formulation of this paper is closest to that of Karmarkar (1991), except that here the 
production lead times are taken as constant and given. However, as in that paper, the 
formulation involves continuous times. discrete events and discrete orders, and has 
combinatorial features. It also has a structural relationship to the weighted tardiness 
sequencing problem. 

The formulation analyzed here thus addresses some of the shortcomings in 
the standard MRP algorithm. However, it does not address some other egregious 
problems. In particular it is assumed that the production process is approximated 
by a fixed production (or order) lead time. Furthermore, the issues.of batching and 
safety times are not considered. These are undoubtedly severe simplifications of the 
real world problem. However, it seems reasonable to extract the material allocation 
problem as a subject for study for the following reasons. First, little attention has 
been given till now to formal analyses of NRP techniques. A single study cannot 
hope to do justice to all the issues involved. Second, the material allocation decision 
is a significant component of the production plan that is actually implemented, when 
the MRP procedure is used to release orders. The material allocation decision, in 
large part, determines the scheduling problem that has to be solved in implementing 
production. A sensible material allocation plan could be at least as important a 
determinant of actual performance. as sophisticated scheduling techniques. Finally, 
the material allocation plan is more visible to a central planner and can be modified 
more easily than schedules on individual machines. Hence the material allocation 
decision is an important part of the production control framework. It is worthwhile 
noting that even the simplified version deaIt with here is computationally complex. 
Relaxing the assumptions made here is not a trivial extension and is a problem left 
for future study. 

We emphasize that the purpose of this study is not to develop optimization 
methods for application to this class of problems. We would argue that this is not a 
pragmatic goal; problems encountered in practice are so large that optimal methods 
would founder in most cases. Rather, our present aim is to develop formal models of 
MRP to make the imbedded decision problems explicit and to bring them into the 
research domain so that the function of JIRP systems is clearly understood. The 
eventual purpose is to develop improved practical methods either as enhancements 
to, or substitutes for: MRP calculations. Given the computational difficulty of the 
problem: we expect that practical methods will have to be judicious combinations 
of heuristics. One of the contributions of this paper is to develop a formal model 
of the material allocation problem. In addition, we also develop methods that per- 
form significantly better than the standard due date based MRP procedure. These 
procedures include both optimization based methods and modifications of existing 
procedures. Our continuing efforts in that direction are briefly described in the last 
section. 
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In the next section, we set out the notation used in this paper. A very simple 
version of the problem where the BON contains only one item, is shown to be NP- 
complete in the ordinary sense by a reduction from the knapsack problem. Following 
this, we present a formulation of the problem based on an MRP-like bill of material 
explosion. A Lagrangean decomposition which yields a lower bound and a heuristic 
are presented. Four heuristics based on modifications of the standard MRP approach 
are presented. An improvement procedure that can use any feasible solution as a 
starting point and attempt to decrease the tardiness of late orders without disturbing 
the priorities in the initial solution is also developed. Optimal solutions to a restricted 
class of bills of material are computed using a dynamic programming algorithm. In 
order to test the quality of the several bounds and heuristics, a set of 3900 small 
problems with 13 different BOhI structures and varying extent of competition for 
material, is solved. The Lagrangean heuristic out performs the MRP based heuris- 
tics; yielding solutions that are 3% to 10% of the optimal. Among the MRP based 
heuristics, one does better than the rest. These approaches are subsequently tested 
for a set of 120 larger problems. Here the best MRP based heuristic does as well as 
the Lagrangean heuristic: yielding solutions that are 25% to 40% cheaper than the 
standard MRP approach. The standard MRP based heuristic is dominated by all the 
other heuristics. l.vhich is not surprisin g given that MRP ignores the magnitudes of 
tardiness penalties. 

2 Notation 

The notation used in this paper is fairly similar to that of Afentakis et al. (1984). 
The BOM can be thought of as a directed acyclic graph. Suppose an item j is a 
direct input to i:em i, i. e. there is an arc in the BOJI graph from item j to item 
i. Then i is said to be an successor of j and j is a predecessor of item i. Item i is 
an ancestor of irem j if: either i is j itself, or there exists a path from j to i in the 
BOM graph; j is a descendent of i. if i is an ancestor of j. Item i is a rnw material 
if it has no inputs. A BOM is said to halre an assembly structure if each item is an 
input to at most one item. It has a genernfized assembly structure if: between any 
two items there exists at most one path: that is: if an item is an input to more than 
one item, these items have no common ancestors. Clearly an assembly structure is a 
special case of the generalized assembly structure: where there is only one end item. 

In addition to the assumptions stated in the introduction, we shall make the 
following assumptions to simplify the discussion. As explained below all these as- 
sumptions can be relaxed without much difficulty. We assume that end items have 
no parent items. To accommodate demand for parts and sub-assemblies, we could 
add dummy nodes in the BOM as parents to such items. with zero lead time. In 
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addition, it is assumed: unless otherwise stated, that the items with no inputs (raw 
materials) have unlimited initial inventory. This amounts to adding an extra node 
for each purchased raw material: with the lead time to the parent item being the 
purchase lead time. We also assume that there are no scheduled receipts at time zero. 
This again is nor a rigid assumption; we could add an extra node for each scheduled 
receipt with the lead time to the parent being the time at which it would be avail- 
able. Finally, we shall restrict our discussion to bills of material with a generalized 
assembly structure. However, as we shall see: most of our models and methods can 
be extended to problems with general structures. 

In addition, let 

z = 

Pi = 

Si = 

Ai = 

pi = 

72; = 

Ij = 

L, = 
772ji = 
Tji = 

ildji = 

& = 
iVi = 

Qik = 
Dik = 
wik = 

The set of items in the Bill of Materials graph 

The set of predecessors of item i 

The set of successors of item i 

The set of ancestors of item i 

The set of descendants of item i 

The set of raw materiais that are descendants of item i 

Initial inventory of item j 

Lead time required to manufacture item i: after all its inputs are available 

The number of units of item j that directly go into one unit of successor i 

The sum of the lead times from item j’s parent to ancestor i 

The number of units of item j that go into one unit of ancestor i 

The set of end items 

Number of orders of end item i 

The size of the kth order of end item i 

The due date of the kth order of end item i 

Cost per unit tardiness of the kth order of end item i 
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Figure 2: Notation 
Numbers alongside arc from j to i represent the number of units of j that go into 
one unit of i. If j is a direct input to i: j is a predecessor of i, and i is a successor to 
j. If either j = i or there exists a path from j to i, j is a descendent of i and i is an 
ancestor of j. 

Consider Figure 2 to illustrate the notation. The number alongside arc (j,i) 
in the BOM graph is the quantity of j required by one unit of i (my;). We shall adopt 
this convention throughout this paper. Let, Lr = 1, Lz = 2, and Ls = 3 (there are no 
lead times associated smith items 4: 5 or 6 since? by our convention they are assumed 
to have unlimited inventory). Then. for example, 
Z= {1,2,3,4.5:6} and & = (1,2}: 
Ps = (6); & = {1,2}, A3 = {1,2:3}. and 27s = {3,6}, 
P6 = cp, Se = {3}, As = {1.2:3,6}, and Ds = {6}, 
T31 = L, = 1. T,, = L2 = 2. J&r = msr = 2, and Ms, = ms2 = 3: 
and, 
Te3 = L3 = 3. TG, = L3 + L1 = 4: TG2 = L3 + Lz = 5, iVf,j3 = rnS3 = 5, 
:k&r = m63m31 = 10, and .\ls, = m6sms2 = 15. 
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3 Model Complexity 

We shall prove that when the BOM contains only one item, the material allocation 
problem is NP-Hard, by showing that the knapsack problem is a special case. The 
knapsack problem. which is NP-Hard (Garey and Johnson, (1979)), can be described 
as follows. 
.Given a finite set U, a size S(U) E Z+ and a value V(U) E Z+ for each u E U, and 
positive integers B and I<. Is there a subset U’ of U, such that CuEUt S(U) 5 B and 

c ug,T’ u(u) 2 Ii?’ 

Now consider the following instance of the material allocation problem. The 
BOM contains one item. with initial inventory B and a purchase lead time of 1 (as 
per our notation. a BOhI with two items, the second item having infinite initial 
inventory). For each u E U, we create an order for the item with order size s(u), 
due date 0, and tardiness cost U(U). Now, if any order u is satisfied from the initial 
inventory, its tardiness cost is 0; eise it is u(u). Therefore we can observe that, if 
U’ is the set of orders that are completely satisfied from initial inventory, it must 
satisfy the condition, C U,U,s(u) 5 B and th e o a weighted tardiness cost would t t 1 

be, L(u-~1) 41,) = &U 4~) - CuE~~ 4~). Th us we can say that an allocation of 
initial inventory with total weighted tardiness less than or equal to ~,,~v(u) - I(, 
exists iff the knapsack problem has a solution with value greater than or equal to 
K. Hence the material allocation problem with a BOM containing only one item is 
YP-Hard in the ordinary sense. 

We can also prove that when the BOA4 is restricted to be a series: the material 
allocation problem is >P-Hard in the strong sense. W’e shall do so by transforming 
the single machine weighted tardiness problem into a special instance of the material 
allocation problem with a serial BOMI, using a pseudo-polynomial transformation. 
Since the former problem is XP-Hard in the strong sense (Garey and Johnson, page 
237), it implies that the latter is also SP-Hard in the strong sense (Garey and Johnson, 
page 101). 

The single machine weighted tardiness problem (SMWT) is: 
‘Given a set T of jobs: a processin g time p,, a due date dl and a tardiness cost 7~ for 
each job t E T and a positive integer A’. Is there a single machine schedule with total 
weighted tardiness A’ or less ?.’ 
Let problem MA be, 
‘Given a serial BOMLI: a lead time L;: initial inventory Zi, and a technology coefficient 
n;,(i-i) for each item in the BOM. a set of orders with specified order size, due date, 
and tardiness cost for each order, and a positive integer I<. Is there an allocation of 
inventories, such that total weighted tardiness is less than or equal to I<?.’ 
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I 

1 

? 
‘7 

0 0 

Figure 3: BON used in complexity proof 
BOM obtained by transforming a weighted tardiness scheduling problem with job 
processing times pt. L = 1 Pt. One unit of an item goes into an unit of it’s successor. 
X11 lead times are 1. Initial inventory of item 0 is 0; for other items: it is 1. For every 
job, there is an order of pt units of item 0. with the same due date and unit tardiness 
costs. 

We shall transform an instance I of problem SMWT into an instance I’ of 
the problem MA’. Consider a serial BOM with L + 1 items (figure 3), where L = 
J&Tp!. Lead times are all 1: initial inventory of item 0 is 0: all other items have 
an initial inventory of one unit: and one unit of item i goes into an unit of item 
,i - l(i = l,... .L). Corresponding to each job t E T, create an order for item 0, 
with order size ptr due date dt, and tardiness cost wt. This defines instance I’. This 
is a pseudo-polynomial transformation. as shown below. In particular, we show that 
I is a yes instance, if and only if: I’ is a yes instance, and that certain conditions, 
involving the time required to compute the transformation, the length of instances I 
and I’. and the biggest numbers in I and I’, are satisfied. Hence we have shown that 
:\IA’ is NP-Complete in the strong sense. Since -VA’ is a special case of the general 
material allocation problem, the latter is also SP-Complete in the strong sense. 
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We shall now show that this transformation is a pseudo-polynomial transfor- 
mation from problem SMWT to MA’. Let Max(l), Max(1’) be the biggest numbers 
in I and I’, respectively and let Length(l), Length(l’) be the length of I, I’, respec- 
tively. To show this we need to establish that 

1. I is a yes instance of SMWT iff I’ is a yes instance of MA’, 

2. The transformation can be computed in time polynomial in Max(l) and Length(l), 

3. There exists a polynomial q1 : VI. qr(Length(l’)) > Length(l), and 

4. .\lax(l’) is b ounded by a polynomial in &fax(I) and Length(l). 

Once we observe that, 

L = xpt 5 Slax(l)lTI < IIax(l)Length(l) 
teT 

the last three conditions are obviously satisfied. Clearly the time required to obtain 
instance I’ is polynomial in Length(I) and L: and hence polynomial in Length(l) and 
&x(l). Condition 3 is easily met since Length(F) > Length(I). And finally: 

Max(l’) = max{L, Xlax(l)} L. Max(l)Len 

Yaw we shall prove condition 1. To solve the material allocation problem 
MA’, each order t has to be allocated pt units. Since each item i, (i = 1,. . . , L) has 
exactly one unit of inventory, this means each order has to be assigned a set St of 
p, items, with the condition that no item is assigned to more than one order. We 
shall now show that given any solution we can convert it, without any increase in the 
objective function. into a sequential solution, that is a solution such that, if i, j E St 
and i <_ k 5 j then k E St. In other words: all orders are allotted items in a sequence. 
Once we do that. we shall then claim that a sequential solution corresponds to a 
single machine schedule with the same weighted tardiness cost, thus proving that the 
transformation is a valid one. 

To prove our first claim suppose order 1 is the first one to be finished. Let the 
last item assigned to it be i. Now assume order 2 is assigned an item j, (j < i). Note 
that the finish time of order 1 is i and that of order 2 is greater than i. Therefore 
an interchange of the assignments of items j and i would result in a decrease in the 
finish time of order 1 and leave the finish time of order 2 unchanged. We can repeat 
this exchange process. without any increase in the objective function, until we have 
a sequential solution. Thus we can see that problem MA’ has a solution with total 
weighted tardiness less than 11’ iflit has a sequential solution with the same property. 
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Now if we have a sequential solution to problem &IA’, the finish time of an order is 
the sum of its order size pt, (which is the processin g time of the corresponding job) 
and the order sizes of the orders that were assigned before it. Clearly, if we use the 
same sequence in the single machine weighted tardiness problem, we shall get the 
same finish times and the same tardiness costs. 

Thus the transformation from instance I of problem SMWT to instance I’ of 
problem MA’ is a pseudo-polynomial transformation. 

4 Model Formulations 

In this section: we present two formulations. The first is a straightforward formu- 
lation, based on an IMRP-like logic. We then present a second formulation for the 
problem and shox that it is equivalent to the first. The second formulation is pre- 
sented for the generalized assembly structure; an estension to the general case is 
discussed. In later sections, we shall use the second formulation for the purpose of 
development of louver bounds and heuristics. 

4.1 A Single Level Peg Based Formulation 

This formulation is based on an MRP-like level-by-level approach. An end item order 
is satisfied from the initial inventory of the end item and internal orders of all its 
predecessors. ;\n internal order: in turn: is supplied from initial inventory of that 
item and internal orders of its predecessors. If an order (i. Ic) is supplied from order 
(j; 2). where j is a predecessor of item i. it is pegged to the order (j, I). Thus this 
formulation includes binary variables that reflect the pegging status between an order 
and the internal orders of its predecessors. ‘These peoo swing variables are used to impose 
constraints on the finish times of orders. The term order includes both internal and 
external orders. unless otherwise stated. Order (j. I) refers to the Ith order of item j. 
Let, 

4jr = Quantity allocated from initial inventory of item j to order (j7 1) 

qikjl = Quantity allocated from order (i, I;) to order (J’, 1) Vi E ?‘j 

ZikjI = 1. if qikjl > 0. 

= 0. otherwise. 

Qik = size of order (i, k) 

Fik = Finish time of order (i: k) 
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Note Qik is given if i is an end item; otherwise it is a decision variable. Let M be a 
very large number. Then our formulation is, 

subject to, 

c qikj( 5 Qlk V internal orders (i, k) 

$qikjl = mij(Q,i - qi,) vi E Z: 

qikjl 5 iblzikjl 

Fjl 2 Fik $ Lj - !LI(I - Zikjl) 

s,q’-Q,f’ 2 0 
z = 0 or 1 

(‘4 

(3) 

(4) 

(5) 
(6) 

(7) 

The first two set of constraints ensure that the quantity alloted, from either initial 
inventory or internal orders, does not exceed the quantity available. The third con- 
straint set ensures that order (j, I) is supplied adequate material from initial inventory 
and the internal orders of its predecessors. Constraint set 4 ensures that if order (i, k) 
supplies order (j,r), th en the latter is pegged to the former. Finally, the last set of 
constraints ensure that the finish time of an item‘s order is at least as much as the 
finish time of predecessor item orders to which it is pegged, plus the lead time of the 
item. 

Since we need to decide the number of variables, one issue that may arise in 
using such a formulation, is the number of internal orders that are possible for item 
i. As there are no batching issues. ail material that is available at any time can be 
grouped together as one internal order. Therefore when the BOM has a generalized 
assembly structure. the maximum number of internal orders of item i can be set at 
the number of descendents it has; in the general case it can be set equal to the sum 
of the number of paths from each descendent. Another approach is to insist that 
each internal order can supply only one order of its successor, and each order can be 
supplied from at most one internal order of each of its predecessor items. We can see 
that these restrictions do not change the finish times of customer orders. The first 
constraint is clearly no problem, since splitting batches would accomplish this. The 
second constraint can be satisfied by collecting all the internal orders of a predecessor 
item that supply an order of a successor item, and combining them into one order. 
Note that the finish time of the combined order will be the maximum of the finish 
times of the orders that went into this combined order: and hence the finish time of 
the successor item’s order remains unaffected. Thus we can see that it suffices to have 
as many internal orders of each item i as the total number of orders of end items that 
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are ancestors of item i. Also note that in this case, internal orders at all levels are 
associated with an unique end order. The formulation presented in the next section 
utilises this approach. 

4.2 Path Based Formulation 

In the previous subsection, we saw that we can, without loss of generality impose a 
lot for lot policy. This is true, essentially because our model does not consider any 
setup costs. We also saw that the lot for lot policy implies that each internal order 
of an item j is associated with an unique end item order. Hence we can refer to an 
internal order associated with the kth order of end item i as order (j,i, k). If an 
order is supplied from internal orders of its predecessor items, it is pegged to these 
orders. Thus the formulation includes binary variables that reflect the pegging status 
between an order and the internal orders of its predecessors. These pegging variables 
are used to impose constraints on the finish times of orders. 

Let, 

Qjik = 

qjik = 

.i!j;k = 

ZZ 

Fjik = 
F;k = 

Size of internal order (j. i: k) 

Quantity allocated from the initial inventory of item j to order (j,i, k) 

1,if Qjik > 0, 
0, otherwise. 

Finish time of order (j: i. I;) 

Finish time of order (i. k) 

The formulation is: 

subject to: 

iEE k=l 

Vj E Z 

Qjlik = mjrj(Qjik - (Ijik) 

vj'Epj Vj'jVi Vk=l;...:LVi ViE& 

Qjik 5 (min(l,. -\fjiQik))Zjik 
vjEE2); Vk=1,...,1Vi ViEE 

(8) 

(9) 

(10) 
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Fjik > Fj’ik + Ljzj’;k 

Vj’EPj VjEVi Vk=l, 

Qiik = Qik 
Vk=l:.....Vi Vigf 

Fik = Fiik 
Vk=l,...:~Vi ViE& 

‘?jikr Qjik 2 0 

FjikT Fik L 0 

, IV< Vi E & (11) 

(12) 

zjik = 0 or 1 

(13) 

(14) 

(19 

(16) 

The first constraint set ensures that the quantity allotted from initial inventory is 
no more than the amount availabie. The second constraint set ensures that the net 
requirements of order (j, i: k) are met by the internal orders of item j’s predecessors. 
Constraint sets 10 and 11 enforce the lead time offsetting pruccss, if the net require- 
ment of an item’s order is positive. Finally constraints 12 and 13 essentially define 
order (i, i, k) to be the kth order of end item i. 

The formulation can be easily extended to consider the case of bills of mate- 
rial where there may be multiple paths between items. The only difference is that 
associated with each end item order, the number of internal orders of an item that 
supplies it is equal to the number of paths. Hence to refer to an internal order we 
need to include a reference to the path number that the internal order corresponds 
to. The formulation can then be obtained in an almost identical fashion. (Karmarkar 
and Nambimadom, 1992). 

5 A Lagrangean Relaxation 

In this section v.-e present a Lagrangean relaxation of a modified version of our for- 
mulation. ‘This relaxation provides a lower bound to the material allocation problem. 
The multipliers were adjusted using a sub-gradient algorithm (Nemhauser and Wolsey 
1988) and the best lower bound was calculated. Heuristic solutions are also obtained 
as a byproduct of the relaxation. \Ve also briefly discuss a number of other Lagrangean 
relaxations. 

For the purpose of our relaxation it is useful to modify our formulation and 
replace constraints 11 and 13 by t,he following. 

Fik 2 TjiZjik (17) 
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where Tji is the sum of the lead times from item j’s parent to item i. To see that 
this is a valid reformulation, note that by constraint 9: Qjik is greater than 0 implies 
Qj’ik is greater rhan 0 for all j’ lying on the path between j and i. Hence zjik = 1 
implies Zj’ik = i for the same j’. Substituting this in constraint set 11 and elimi- 
nating the variables Fjik, we get constraint 17. Sote that we can obtain the reverse 
transformation by suitably defining the variables Fjik. 

Relaxing constraint set 8 decomposes the problem by end order. Let X be a 
set of Lagrangean multipliers (X 1 0): z’(X) be the solution to the relaxed problem, 
and z!~(X) be the solution to the sub-problem associated with order (i, L). Then, 

z’(X) = c c z;k(x) - c x;r, 

iE& k=l jU 

We shall now consider a solution procedure for solving the subproblem associated 
with order (i,k). For the purpose of the ensuing discussion, ignore items that are not 
descendants of item i. The subscripts associated with the end item and order number 
have been dropped, whenever they are unambiguous, for the sake of clarity. Let, 

2) = The set of descendants of end item 1 
n = v)I 

L: = The sum of lead times along the path from item i to item 1, 
including the lead time for i 

= lyl$Lj vi= l:...:n 
Lb = 0 

Since we have removed all the items that are not descendants of item 1, 2) is now the 
set of all items. Sate that the BOSI graph is now a tree. In this section; it is assumed 
that the items have been renumbered in a non-decreasing sequence of L:. Define, 

Qj = The size of the internal order for item j Vj E 23 

qj = The amount of item j allocated to order (1.1) Vj E 23 

zj = 1: ifqj>O 
= 0, otherwise Vj E V 

F = Finish time of order (1; 1) 

Then the sub-problem associated with order (l:l), Pii( is! 

subject to. 

Q,f = mjlj(Qj -q,) Vj’ E Pj Vj E TJ (18) 
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Qj 5 (min{1j,MjrQ})zj Vj E: D (19) 
F 2 T’lzj Vj E D (20) 

&I = Q (21) 
Qj,F 2 0 (22) 

zj = 0 or 1 (23) 

The above problem is a mised integer program. The Lagrangean multipliers associ- 
ated with an item can be interpreted as material costs. The objective is to minimize 
the sum of tardiness and material costs, while ensuring that the material needed by 
the customer order is satisfied. 

The integral variables in the above problem are a result of the tardiness cost 
term. If we set the finish time variable F at a particular value. the tardiness cost is 
fixed. In addition. material can be allotted from only those items which guarantee 
that the finish time of the customer order is no more than the value of F (constraint 
20). The minimum total material cost is now given by a linear program. We can also 
see that the n. + 1 possible values of F are given by Lb,. . . : L’,. The tardiness costs 
is non-decreasing and the total material cost is non-increasing as we increase F from 
Lb to L,h. Thus we can solve the above problem by solving n + 1 linear programs 
and picking the minimum total cost solution. Solving n + 1 linear programs using a 
standard LP code can be time consuming. Note that the only difference in the linear 
programs resulting from fising F at Li- and fixing it at Lj+, is that in the latter, Q, 
can be greater than 0 for the predecessors of item j + 1. Appendix B provides an 
alternative algorithm which exploits this feature. .Another alternative is to use the 
optimal basis for the former linear program as the starting basis of the latter. In this 
paper the first approach has been taken. The resultant algorit.hm has a complexity 
of O(n3) for solving the sub-problem associated with an end order. 

Karmarkar and Nambimadom (1992) discuss a number of other Lagrangean 
relaxation based procedures to generate lower bounds and heuristics. However their 
numerical experiments show that the methods reported in this paper are superior. 
They also provide a dynamic programmin g algorithm that calculates the optimal 
solution for small problems. 

6 Heurist its 

We developed a number of heuristics for the material allocation problem. They can 
be divided primarily into two groups. The first group of heuristics is based on the 
Lagrangean relasation examined in Section 5 or those suggested there. The second 
group of heuristics is based on modifications of the standard MRP based approach. 
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Finally, we also obtained an improvement heuristic which starts with any initial so- 
lution and attempts to make it better. We shall first discuss the various heuristics 
and then describe the heuristics whose computational performance is reported in this 
paper. 

6.1 Lagrangean heuristics 

The Lagrangean heuristic tested in this paper uses the solution to the relaxed problem 
with the multipliers that yielded the best lower bound as a starting point. Customer 
orders are sequenced by the earliest finish time in this solution and material is assigned 
to orders as per the sequence. Karmarkar and Nambimadom (1995) examines a 
number of other approaches to generate heuristics. However as in the case of lower 
bounds, the methods used in this paper prove to be superior. 

6.2 MRP based heuristics 

The simplest I\IRP based heuristic allocates initial inventory according to the earliest 
due date rule. Recall that the due date here refers to the due date of the internal 
order (net requirement), obtained by the lead time off-setting process. Thus material 
is allotted in the sequence in which net requirements are created. Internal orders 
are generated for predecessor items to meet the net requirements. The due dates 
for the internal orders are obtained by offsetting the original order’s due date by the 
lead time needed to assemble the predecessor items. This process could end up with 
negative start times. In that case. start times are pushed to 0 and a forward pass is 
made to calculate the actual finish times and the resultant tardiness. If all the start 
times are nonnegative at the end of the backward pass, all the orders can be done in 
time and thus the optimal solution: which is given by this heuristic, has an objective 
function value of 0. In fact. as shown by the following proposition, the optimal 
objective function value can be 0 only under this scenario. This result establishes the 
optimality of the MRP heuristic if there exists a solution in which all orders can be 
completed in time. 

Proposition 1 If in the solution given by the MRP heuristic: at least one order is 
delayed, then there exists no solution in which all orders can be completed in time. 

Proof 
Consider an order which is tardy in the solution given by the hIRP heuri.;tic. Suppose 
it is tardy because it is allotted material from the initial inventory of an item j. 
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To finish this order by its due date, one has to allot the material allotted from an 
ancestor of item j to another order, to this order. This may not be possible because 
of insufficient initial inventory of the ancestors of item j. In that case our claim is 
true. If not, the order which was originally allotted this material has to be allotted 
material from item j’s inventory. But since this latter order had priority over the 
tardy order in the solution given by the due date based MRP heuristic, it must have 
an even tighter due date and hence will now be tardy. Thus it is not possible to 
complete the tardy order in time without making some other order late. 0 

We consider two modifications to this heuristic. In both, material is allotted 
to orders on the basis of the earliest due date rule? if no order is already tardy. If 
not, all orders with a negative due date are given priority over the-others. Orders 
with negative due dates are sequenced according to their tardiness penalties (w;k) 
in the first modified heuristic and according to the ratio of the tardiness penalty to 
the order size in the second modified heuristic (order size refers to the size of the 
internal order). The orders with positive due dates are sequenced by the earliest due 
date rule. Both these modifications of the simple MRP heuristic share its property 
of finding the optimal solution, if it is possible to do all jobs in time. 

6.3 An improvement heuristic 

An improvement heuristic which can be used in conjunction with any other heuristic 
can be obtained as follows. In both the examples discussed in the introduction, the 
improved performance was obtained by recognizing the inevitability of one of the jobs 
being delayed. Based on this observation, material allotment was adjusted so as to 
make an effort to meet the due date of the other order, without further delaying the 
tardy order. Thus given any material assignment: we could treat the finish times in 
this assignment as the due date and apply the simple due date based 3IRP heuristic. 
with ties broken randomly. One could repeat this process till there is no improvement 
in the objective i-mction. The following proposition guarantees the convergence of 
this heuristic. 

Proposition 2 In each iteration: the finish time of an order is no more than its 
finish time in the previous iteration. 

Proof 
This follows from the following observations. First, note that the finish time in 
the previous iteration is treated as the due date for the current iteration. Hence 
there exists a solution where all orders can be completed by their current due date 
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(the solution obrained in the previous iteration is one possibility). Second, as a 
consequence of Proposition 1, the MRP heuristic will also provide a solution where 
all orders can be completed by their due date. Thus the finish time of an order is no 
more than its finish time in the previous iteration. cl 

Proposition 2 also proves that the improvement heuristic does not change im- 
prove any order’s performance at the cost of another order. This can be an important 
consideration if :he starting solution reflected relative priorities among orders that 
have been set by another algorithm or by managerial intervention. Another interesting 
feature of the improvement heuristic is that it does not require explicit specification 
of tardiness penairies, since it preserves the relative priorities implicit in the starting 
solution. Thus the only information needed is the data in the Bill of Materials. 

The heurisrics whose performance is reported in this paper are LH, the first La- 
grangean heuristic. augmented by the improvement procedure; MRPl, the standard 
due date based JIRP heuristic; MRP2~ which is MRPl followed by the improvement 
heuristic; MRP3. the first of the modified MRP heuristics (where orders with neg- 
ative due dates are sequenced in decreasing order of their tardiness penalties, ~ik), 
with the improvement heuristic; and finally, MRP4T which is same as MRP3, ex- 
cept that orders ::-ith negative due dates are sequenced by the ratio of their tardiness 
penalties to their order sizes. 

7 Computational Results 

We first tested our procedures for 13 small Bills of Material. and later on 4 larger ones. 
For each of the 13 small bills of material: 300 sample problems \vere solved. 30 sampIe 
problems were solved for the larger bills of material. Table 1 summarizes some of the 
characteristics of the BOM in the data set. Further details are provided in Karmarkar 
and Nambimadom (1992). For the first 13 BOM. the optimal solution was obtained 
using the DP algorithm. \Ve evaluated the lower bound obtained by the Lagrangean 
relaxation (LB) and the five heuristics described above (LH, MRP1,MRP’Z~ AbIRP3. 
and MRP41. 
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Table 1: Characteristics of the BOM structures used in numerical tests 

BOM : Bill of material number; Items : Number of items; End items : Number of 
end items; Levels : Number of levels in the bill of material; Width : Number of items 
on the same level: Paths to end items : Number of paths leading from an item to end 
items 

We will start our description of the sample problems by first providing an 
overview of the data generation procedure and then the details of each step. The 
initial inventory data was generated randomly, using a procedure which attempts to 
ensure that material is uniformly spread: as we go from the roots to the raw materials. 
After the initial inventory data is generated, the customer order data is generated. 
The procedure that generates customer order sizes utilizes the initial inventory data 
and a parameter termed the AIaterial Competition Factor (JICF). By varying the 
MCF value, we can adjust the degree of competition for material. In particular, a 
MCF value of 1 indicates that there is a rough balance between total inventories 
and total customer orders; a higher value indicates scarcity of inventory and a lower 
value, abundance. Due dates for customer orders do not exceed the total lead time 
for purchasing and production of the end items. 

Each end item’s initiai inventory was uniformly distributed between 25 and 
125. For each path leading from an item j to an end item i. a random number between 
25 and 125 was generated. This number was then multiplied by t,he number of units 
of item j, that went into one unit of end item i along that path. The initial inventory 
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of item j, was taken to be the sum of these products, over all paths leading from j 
to end items. To generate the order sizes for the customer orders of an end item, 
first the longest path leading to that end item was identified. Then for each item on 
this path, we calculated the number of end item units that could be produced using 
that item’s initial inventory, provided there was sufficient inventory of items not on 
this path. In other words, we divided the initial inventory by the number of units 
of that item needed to produce one end item. These were then added up over items 
on the longest path (excluding the leaf item, which by our convention has unlimited 
inventory). Let this sum be A. Thus A is the number of units of the end item that 
could be produced, if there were abundant supply of items not on the longest path. 
Having calculated this. we let the order size be an uniform random variable between 
1 and (2A x MCFIN;), h w ere MCF is a parameter which controls the competition 
for material. For generating the due dates, the maximum of the sum of lead times 
along paths leading from raw materials to the end item was calculated. The due 
dates of customer orders were uniformly distributed between 0 and this quantity. 
The tardiness costs were uniformly distributed between 0 and 1. 

For each bill of material. we tested the lower bounds and the heuristics for 
three values of the Material Competition Factor (0.5, 1.0 and 2.0). The number of 
end orders for each end item was set at 10 for BOMs with a single end item, 5 for those 
with two end items and 4 for three end item cases. Thus in the one or two end item 
cases there were 10 end orders, and 12 in the three end item BOMs. For each BOSI: 
MCF combination, 100 problem instances were solved. After generating an instance 
the optimum solution was first calculated. If it turned out to be 0: the instance 
was discarded, and a new instance was generated. Otherwise the lower bound (LH) 
and heuristic solutions (LH. MRPl. MRP2, MRPS. and MRP4): were calculated 
as fractions of the optimal solution. Then the mean and standard deviation of these 
values over the 100 instances were calculated. The procedures were coded in Pascal 
(Turbo Pascal Version 7) and run on a Gateway 2000 4%/66 MHZ PC. 

These results are tabulated in Table 2 with the sample standard deviation 
in brackets. The performance of the different methods did not seem to exhibit a 
dependence on the BOM structure used. So we sob garegated the results over all Bills of 
Material to obtain the first set of numbers depicted in Table 4. A close examination of 
the results indicated that the lower bound and the heuristics often ‘performed poorly’ 
when the optimal objective function value was small. This turned out to be due to 
the fact that we judge the solutions obtained by the lower bound and the heuristics 
on the basis of the ratio of their objective function value to the optimal objective 
function value. 1Vhen the latter is small, this ratio appears to be large, even if the 
actual difference between! say. the lower bound and optimal is small. So to judge the 
performance of the different procedures fairly, we separated out the sample problems 
on the basis of the optimal objective function value. If this value was more than 1, 
the problem was deemed to be ‘easy’, otherwise it was deemed to be ‘difficult’. The 
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Table 2: Results for BOM l-13, as a Fraction of the Optimal Solution 
(see Table 3 for explanation of terms) 

BOM MCF LB LH MRPl MRP2 MRP3 MRP4 
0.5 0.69 (0.32) 1.20 (0.96) 3.57 (13.19) 3.47 (13.19) 3.39 (13.20) 3.37 (13.20) 

1 1.0 0.63 (0.34) 5.79 (37.27) 8.49 (38.93) 8.39 (38.93) 8.25 (38.95) 7.87 (38.29) 
2.0 0.81 (0.17) 1.09 (0.30) 2.22 (1.47) 2.06 (1.39) 1.95 (1.34) 1.91 (1.35) 
0.5 0.70 (0.26) 1.18 (0.87) 3.85 (12.70) 3.71 (12.71) 3.68 (12.71) 3.66 (12.71) 

2 1.0 0.74 (0.27) 1.39 (2.78) 2.72 (3.58) 2.61 (3.60) 2.52 (3.62) 2.48 (3.63) 
2.0 0.87 (0.11) 1.07 (0.21) 1.97 (1.06) 1.85 (1.00) 1.67 (0.83) 1.63 (0.79) 
0.5 0.69 (0.28) 1.28 (1.58) 2.61 (2.68) 2.47 (2.63) 2.40 (2.63) 2.38 (2.63) 

3 1.0 0.68 (0.31) 1.52 (2.41) 2.78 (3.54) 2.59 (3.17) 2.52 (3.18) 2.50 (3.19) 
2.0 0.82 (0.18) 1.03 (0.06) 2.17 (1.39) 2.02 (1.21) 1.88 (1.10) 1.84 (1.11) 
0.5 0.65 (0.37) 1.29 (1.10) 1.53 (1.20) 1.51 (1.20) 1.50 (1.20) 1.50 (1.20) 

4 1.0 0.61 (0.38) 1.38 (0.98) 2.30 (2.21) 2.17 (2.05) 2.03 (2.02) 2.02 (2.02) 
2.0 0.81 (0.22) 1.12 (0.52) 2.08 (1.16) 2.00 (1.15) 1.69 (1.07) 1.59 (0.83) 

0.5 Cl.69 (0.31) 1.80 (5.55) 3.92 (10.03) 3.82 (10.04) 3.70 (10.05) 3.72 (10.05) 
5 1.0 0.58 (0.35) 4.17 (21.25) 5.02 (21.16) 4.91 (21.17) 4.76 (21.19) 4.75 (21.19) 

2.0 0.84 (0.16) 1.18 (1.07) 1.93 (1.22) 1.88 (1.21) 1.74 (1.18) 1.66 (1.18) 
0.5 0.69 (0.29) 1.07 (0.34) 2.26 (2.78) 2.11 (2.68) 2.11 (2.68) 2.11 (2.68) 

6 1.0 0.71 (0.29) 1.12 (0.64) 1.65 (1.02) 1.56 (0.99) 1.50 (0.98) 1.50 (0.98) 
2.0 0.82 (0.17) 1.17 (1.22) 2.01 (1.52) 1.82 (1.48) 1.65 (1.41) 1.64 (1.42) 

0.5 0.70 (0.34) 1.29 (1.13) 1.66 (1.37) 1.59 (1.33) 1.56 (1.30) 1.56 (1.30) 
7 1.0 0.69 (0.30) 1.43 (1.70) 2.28 (2.32) 2.04 (1.87) 2.04 (1.86) 2.04 (1.87) 

2.0 0.82 (0.16) 1.13 (0.33) 2.07 (0.96) 1.89 (0.85) 1.83 (0.84) 1.83 (0.85) 
0.5 0.68 (0.37) 1.13 (0.49) 1.58 (1.85) 1.50 (1.82) 1.48 (1.82) 1.49 (1.82) 

8 1.0 0.73 (0.29) 1.14 (0.40) 1.70 (0.93) 1.57 (0.68) 1.55 (0.67) 1.53 (0.66) 
2.0 0.89 (0.09) 1.05 (0.15) 1.84 (0.77) 1.68 (0.72) 1.67 (0.73) 1.66 (0.73) 

0.5 0.67 (0.32) 1.11 (0.55) 2.74 (4.65) 2.66 (4.65) 2.64 (4.66) 2.63 (4.66) 
9 1.0 0.63 (0.28) 2.10 (9.38) 2.95 (9.45) 2.83 (9.47) 2.79 (9.47) 2.76 (9.45) 

2.0 0.84 (0.14) I.05 (0.09) 1.71 (0.62) 1.58 (0.57) 1.47 (0.60) 1.44 (0.56) 

0.5 0.74 (0.28) 1.10 (0.35) 1.96 (3.96) 1.92 (3.97) 1.89 (3.97) 1.88 (3.97) 
10 1.0 0.65 (0.30) 1.36 (2.22) 2.23 (3.68) 2.01 (3.16) 1.90 (3.15) 1.90 (3.15) 

2.0 0.83 (0.17) 1.06 (0.16) 1.84 (0.86) 1.68 (0.69) 1.49 (0.66) 1.46 (0.65) 
0.5 0.70 (0.35) 1.13 (0.69) 3.84 (20.11) 3.78 (20.12) 3.60 (20.12) 3.61 (20.12) 

11 1.0 0.61 (0.32) 2.02 (7.07) 2.78 (7.40) 2.59 (7.30) 2.51 (7.30) 2.51 (7.30) 
2.0 0.85 (0.14) 1.05 (0.11) 1.89 (1.05) 1.69 (0.91) 1.44 (0.52) 1.41 (0.51) 
0.5 0.73 (0.29) 1.06 (0.29) 1.62 (1.62) 1.38 (1.24) 1.37 (1.24) 1.36 (1.24) 

12 1.0 0.67 (0.30) 1.24 (0.98) 1.86 (1.39) 1.74 (1.19) 1.63 (1.13) 1.65 (1.14) 
2.0 0.83 (0.14) 1.11 (0.43) 1.76 (0.77) 1.58 (0.62) 1.49 (0.59) 1.46 (0.58) 
0.5 0.69 (0.31) 1.18 (1.22) 1.82 (1.98) 1.67 (1.96) 1.65 (1.95) 1.66 (1.95) 

13 1.0 0.65 (0.27) 1.17 (0.54) 1.85 (1.41) 1.67 (1.23) 1.59 (1.18) 1.58 (1.09) 
2.0 0.77 (0.17) 1.06 (0.10) 1.53 (0.52) 1.38 (0.47) 1.34 (0.46) 1.32 (0.47) 

next two set of numbers in Table 4 show the performance of the different procedures 
when we aggregate separately o\-es ‘easy’ and ‘difficult’ problems. Table 3 shows the 
average absolute difference between the objective function values obtained by the 
lower bound and the various heuristics and the optimal objective function value. 
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A number of interesting results are apparent. First, though the performance of 
the lower bound and the heuristics appears to be relatively poor for the ‘easy’ prob- 
lems, the actual magnitude of the difference from the optimal (as indicated in Table 
5) is smaller for these problems. In other words, the lower bounds and the heuristic 
do not really do badly on the ‘easy‘ set of sample problems; they just appear to do so, 
because we look at the ratios relative to the optimal. Our comments below about the 
lower bounds and the heuristic solutions will be confined to their performance on the 
‘difficult’ set of problems. Second, we can see that the Lagrangean heuristic provides 
solutions that are within about 5% of the optimal when the Material Competition 
Factor is 0.5 or 2.0. However when MCF is equal to 1, the Lagrangean heuristic is 
within 10 % of the optimal. We found that the Lagrangean heuristic provided the 
optimal solution in about half of the problems in the ‘difficult’ data set. The various 
AMRP based heuristics are clearly inferior to the Lagrangean heuristic. The standard 
MRP heuristic yields solutions that are: on average, 155% to 178% of the optimal, 
as MCF increases from 1 to 4. The improved MRP heuristics do better: they are 
usually within about 140 % to 150 % of the optimal. The lower bound is, on average, 
between 80 % to 85 % of the optimal. Xs in the case of the Lagrangean heuristic, 
the lower bound does better for MCF values of 0.5 and 2.0 than for the intermediate 
value of 1. 

The performance of the four heuristics and the lower bound was also examined 
for four larger bills of material with more customer orders. However, the optimal 
solution could not be calculated due to the size of these problems. Rence we only 
present the ratios of the lower bound and the heuristics with respect to the standard 
MRP heuristic (JIRPl). Th e number of orders was set at 50 for single end item 
cases: 25 per end item (total of 50) for two end item cases and 20 per end item (total 
of 60) for three end item cases. 10 sample problems were generated for each BOM, 
MCF combination. The mean and standard deviation of these ratios over the 10 
problems for each set were calculated. Table 3 shows the results. 
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Table 3: Results for BOM 14-17, as a Fraction of the MRPl Heuristic 

BOM MCF LB LH MRP2 MRP3 MRP4 

0.5 0.12 (0.10) 0.75 (0.22) 0.97 (0.02) 0.82 (0.15) 0.81 (0.16) 
14 1.0 0.39 (0.08) 0.59 (0.13) 0.98 (0.02) 0.75 (0.07) 0.64 (0.08) 

2.0 0.58 (0.07) 0.73 (0.09) 0.99 (0.02) 0.85 (0.07) 0.76 (0.06) 

0.5 0.15 (0.06) 0.76 (0.12) 0.95 (0.05) 0.78 (0.14) 0.78 (0.14) 
15 1.0 0.41 (0.05) 0.65 (0.07) 0.95 (0.03) 0.78 (0.11) 0.67 (0.09) 

2.0 0.59 (0.05) 0.75 (0.06) 0.97 (0.02) 0.89 (0.04) 0.76 (0.07) 

0.5 0.15 (0.06) 0.72 (0.16) 0.96 (0.04) 0.74 (0.13) 0.73 (0.12) 
16 1.0 0.42 (0.07) 0.66 (0.07) 0.98 (0.02) 0.70 (0.10) 0.61 (0.10) 

2.0 0.60 (0.07) 0.70 (0.10) 0.99 (0.01) 0.85 (0.09) 0.70 (0.07) 

0.5 0.13 (0.05) 0.66 (0.25) 0.90 (0.06) 0.66 (0.13) 0.65 (0.14) 
17 1.0 0.41 (0.05) 0.60 (0.06) 0.96 (0.04) 0.67 (0.10) 0.60 (0.07) 

2.0 0.59 (0.06) 0.69 (0.04) 0.99 (0.01) 0.82 (0.09) 0.71 (0.07) 

Table shows mean ratios over 10 instances (100 instances for tables 2, 4 and 5); 
brackets contain sample standard deviations. MCF : Material Competition Factor; 
LB : lower bound obtained by the Lagrangean Relaxation; LH : heuristic obtained 
from the Lagrangean relaxation with improvement heuristic; MRPl : due date based 
MRP heuristic; MRP2 : MRPl with improvement heuristic; MRP3, hlRP4 : Modified 
MRP heuristics with improvement heuristic 

Table 4: Summary of Results for BOM 1 to 13 

Type of Problems NCF LB LH MRPI MRP2 MRP3 .MRP4 

0.5 0.69 1.22 2.54 2.43 2.38 2.38 
ALL 1.0 0.66 1.99 2.97 2.82 2.74 2.70 

2.0 0.83 1.09 1.92 1.78 1.64 1.60 

0.5 0.60 1.33 3.21 3.09 3.05 3.06 
EASE 1.0 0.47 3.24 4.65 4.46 4.41 4.34 

2.0 0.61 1.50 3.49 3.13 2.98 2.92 

0.5 0.82 1.05 1.55 1.47 1.40 1.39 
DIFFICULT 1.0 0.80 1.09 1.76 1.64 1.53 1.51 

2.0 0.85 1.05 1.78 1.65 1.52 1.48 

Table shows the performance of the various procedures over 1300 sample problems for 
each IvfCF value. The first set of numbers (ALL) indicate performance over the entire 
set of 1300 sample problems. The last two set of numbers (EASY and DIFFICULT) 
show performance when data set is divided up into two sets based on the optimal 
objective function value. The EASY data set contains problems for which the optimal 
objective function value is less than 1.0, the DIFFICULT data set contains the rest. 
See Table 3 for description of the procedures. 



478 UDAYS.KARMARKARANDRA~~AKRISHNANS.NAMBIMADOM 

Table 5: Summary of Results for BOkLI 1 to 13 - Absolute Differences with Optimal 

Type of Problems MCF LB LH MRPI kIRP2 MRP3 MRP4 

0.5 0.28 0.10 0.93 0.80 0.68 0.65 
ALL 1.0 0.50 0.22 1.93 1.62 1.30 1.24 

2.0 0.79 0.27 4.15 3.46 2.62 2.29 

0.5 0.13 0.06 0.37 0.32 0.30 0.30 
EASY 1.0 0.21 0.17 0.63 0.55 0.52 0.51 

2.0 0.20 0.15 1.34 1.10 1.01 0.97 

0.5 0.50 0.16 1.73 1.49 1.22 .1.15 
DIFFICULT 1.0 0.71 0.26 2.87 2.39 1.87 l.i7 

2.0 0.84 0.28 4.41 3.67 2.76 2.41 

Table shows the averages of the absolute deviation from the optimal objective function 
value (as opposed to the ratios shown in Tables 2: 3 and 4). See Tables 3 and 4 for 
descriptions of the heuristics and data sets, respectively. 

For these problems: MRP4 did about as well as the Lagrangean heuristic. 
Among MRP heuristics the sequence remained the same as before. The best heuristics 
(LH and MRPJ) were about 25 % to 40 % better than the standard MRP heuristic. 
The best performance was obtained for SICF values of 1.0. The lower bound was 
about 15%, 40% and 60% of the solution given by the MRP heuristic for IlCF values 
of 0.5. 1.0, and 2.0: respectively. The gap between the lower bound and the heuristics 
is large, particularly for low values of MCF. Judging from our experience with the 
smaller problems: the sub-optimality of the MRP heuristic is probably the bigger 
contributory factor. 

Running times are reported in Karmarkar and Nambimadom. The improve- 
ment procedure typically does 3 passes. and hence the running time for MRP2 is 
three times that of MRPl. The modified MRP heuristics by themselves take about 
50% more time than the standard MRP approach. However the program developed 
was not optimized with respect to running time; exploitation of more sophisticated 
data structures is likely to narrow the gap between the standard MRP approach and 
the other procedures discussed here, to a considerable extent. The Lagrangean re- 
laxation took about 2000 times the running time of the MRP procedure. However 
our experience suggests that storing some intermediate calculations can decrease the 
running times by a factor of 50. Furthermore, the number of iterations in the re- 
laxation can be decreased considerably without seriously affecting the quality of the 
Lagrangean heuristic (though the lower bound may be significantly looser). To sum- 
marize, obtaining the optimal solution appears to be unrealistic for large problems; 
however the methods suggested in this paper, particularly iWRP4 and the Lagrangean 
heuristic with the modifications suggested above; perform significantly better than 
the standard 1IRP approach at the cost of a moderate increase in running time. 
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In this paper, n-e have studied the material allocation problem in MRP systems. This 
problem was shown to be NP-Complete. A mixed integer programming formulation 
was presented and a Lagrangean relaxation was developed. The relaxation yields 
a lower bound and a heuristic. Four heuristics based on the due date based MRP 
approach and its modifications were also developed. It was shown that the heuristics 
are guaranteed to produce the optimal solutions in certain important cases. In ad- 
dition, a procedure designed to improve any existin g solution, while preserving the 
priorities inherent in the solution was examined. This procedure dbes not require 
explicit specification of tardiness penalties. An optimal algorithm was developed for 
a class of problems. A set of 3900 small problems involving 13 bills of material was 
used in an initial test. In this test, the ratio of the Iower bound, the upper bound 
and the four lIRP heuristics to the optimal solution was calculated. The Lagrangean 
heuristic dominated the MRP based heuristics; its solutions were within 5% to 10% 
of the optimal solution. Th e h euristic and the lower bound performed better, rela- 
tive to the optimal, when material was either scarce or abundant than the case with 
intermediate material availability. Among the 4 XIRP heuristics one generally per- 
formed better than the others. A test over a set of larger problems involving 4 biIls 
of material was also carried out. In this case the Lagrangean heuristic and the best 
MRP based heuristic gave similar results, with costs about 25% to 40% less than the 
standard MRP heuristic. One particularly interestin, u conclusion is that the modified 
MRP procedures yield significant improvements at a moderate computational cost. 

One avenue of future research would be to develop improved computational 
procedures for rhis problem. Another area which needs to be examined, deals wit,h 
the nature of the problems examined. In this paper. inventory was generally spread 
out equally through the system. Thus the issues involved were generally those of 
discriminating between orders based on due dates, tardiness penalties and order size. 
The .MRP approach addresses the first issue to some extent, but not the later two 
aspects. It would be of interest to examine situations where the amount of inventory 
present along various paths varied significantly. It would also be of considerable 
interest to provide the MRP system with some ability to consider scheduling issues. 
\Vork is now in progress on developing a MRP system with variable lead times. 
In addition, a project underway examines the integration of material planning and 
detailed scheduling. 
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Appendix A 

Details of the Complexity Proof 

Appendix B 

An Algorithm for solving the Lagrangean Relax- 
ation (Section 5) 

Suppose the finish time, F is fixed at Li. Then let Cj,(q) represent the cost of obtaining 
the qth unit of item j’ in the cheapest manner possible, using only the inventories of those 
items that will allow the order to be finished by time Li. Suppose j’ is an allowed item. If 
it is a raw material. there is no material cost associated with it, and hence Cy(q) is 0 for 
all q. If j’ is greater than j. then its predecessors cannot be used; else the finish time of the 
order will be at least Lg,, xvhich is greater than L: by our numbering convention. Hence 
Cj,(q) will be Xj,. for q 2 Ij,. and infinity for larger values. If j’ < j, it can be assembled 
from its predecessors. Let C’;,(q) be the cost of obtaining the qth unit of item j’, in the 
cheapest manner possible by assembling its predecessors (in other words, we do not consider 
the possibility of using the initial inventory of item j’). This cost would be the sum of the 
cost of obtaining each of the predecessors of j’ in the required quantities. Therefore, 

mpp 
C$(q) = c 

j”Ep q’=m ,~~-~)+~‘c”‘(q’) 9 I, 

Now to obtain, Cj~(q), we note that the inventory of item j’ would be used if it has not 
been completely used and it is cheaper than assemblin, c the predecessors. Therefore, if q’ is 
such that, 

we can set, 

CJ#(q’ - 1) < Xjl 5 C;*(q)) 
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Cjt(S> = C:l(4)9 (1 < 9' 

= $1 ‘1’ < fJ < q’ + Ij - 1 

= Cjf(q - I,), Q > Q’+ Ij 

Note that Cj,(q) is piecewise constant. The number of discontinuities is equal to the 
number of descendants of item j’ that are allowed. This observation can be used to calculate 
this function in a time proportional to the number of descendants of item j’. The material 
cost of allotting material to the customer order is given by C$, C,(q). To calculate the 
cost function associated with the end item we need to recalculate the cost functions of all 
items lying on the path between j and the end item. Finally, F has to ,he fixed at R + 1 
different values. Thus, the overall complexity of this algorithm is 0(n3). Note that once we 
solve the problem with the finish time F fixed at Ls-r, we can use the same cost functions 
for all items that do not lie on the path between j and the end item, to solve the problem 
with F fixed at L$. 
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